
In last month’s column, I described the world of HRM
software before we got SaaSy. During the late 1990s,
the HRM software industry experimented with many

variations on the previous business models (what if cus-
tomers could adopt a pay-as-you-go model?), deployment
approaches (what if providers hosted and upgraded the
software for the customer?), but without widespread at-
tention to the underlying single tenant architecture.

Vendors calling themselves ASPs (application service
providers) thought they could manage very rapid up-
grades, thereby allowing them to come to market more
quickly and to build out functionality behind the scenes.
They also thought that they could make the buy deci-
sion a lot easier for their customers, thereby shortening
the sales cycle considerably.

There was a lot of good thinking here about deploy-
ment options and business models, but these vendors
quickly discovered that their installation, operations,
and support costs were totally unaffordable. Furthermore,
many of them came to market without solid underlying
object models or architectures, which broke down
quickly under the weight of enhancements. And with
no big up-front license payments to fund them, these
ASP pioneers lost money during the early years of every
customer relationship.

Table 1 lists some of the lessons from these experi-
ments in off-premise deployment and pay-as-you-go busi-
ness models, along with those of HRO pioneers such as
ADP and Ceridian, which brought us to architectural
(as opposed to marketing only) SaaS. Software-as-a-
service is the industry’s response to these lessons. It is an
architectural, business model, and deployment approach
taken by the vendor/owner of an application software
package. SaaS applications are NEVER implemented in-
house by their customers, but they must be designed to
provide substantial integration capabilities to those still
in-house or other SaaS applications with which they
must interoperate. While the server environment might
be outsourced by the software’s owners, the SaaS vendor
is accountable for delivering incredible up-time and re-
sponse time.
SaaS applications are based on a single set of common

code and data or object definitions that are consumed in
a one-to-many model. While there may be reasons of op-

erational performance to load balance or to configure
the software differently for different target markets, there
is only one logical instance of the application. The
model is about sharing business rules, work flows, and
other configurations.
Finally, SaaS applications are always on a pay-per-use

or subscription basis. While there is usually a subscrip-
tion period of at least one year with incentives provided
for longer subscriptions, the more comprehensive and
complex the software, the longer a subscription period
needs to be.
Small or less complex organizations may be well-served

and get much of the benefit of SaaS via pre-
configured versions of on-premise/single-tenant software
delivered on a hosted, subscription basis—where the ven-
dor has done an excellent job of achieving the maximum
possible operational efficiency without multi-tenancy.
Much larger or more complex organizations may well pre-
fer the sense of control that comes with having their own
software and database instance delivered on a hosted,
subscription basis.

But these other approaches simply can’t achieve the
lower costs of software delivery, the higher levels of
client-specific configuration, or the highly beneficial
cross-client analytics that can be achieved by a SaaS
vendor’s equally disciplined and automated operations.
So, if we’ve got SaaS, do we need BPO? Next month’s
column reveals all. HRO

If We’ve Got SaaS, Do
We Need BPO?
It’s been a long road to where we are today with software-as-a-service, but the business model is finally economically viable.

Understanding how we got here sets the groundwork for answering the question: Do we need SaaS in BPO? By Naomi Bloom

Tech in Bloom

Naomi Lee Bloom,
Managing Partner,
Bloom &Wallace,
can be reached at
239-454-7305 or
naomibloom@
mindspring.com. You
can also follow her
on Twitter
@InFullBloomUS.

www.hrotoday.com June 2009 HRO Today xx

• Without being able to run their software on a one-to-many basis, a vendor’s costs for deploying/upgrading/
supporting the software are just too high, not to mention the opportunities for operational errors.

• Off-premise doesn’t mean disconnected; all the same interfaces that keep that on-premise portfolio of appli-
cations connected must be recreated when an off-premise application needs those same connections.
• Configuration by client is just as important in off-premise as it is in on-premise software, perhaps even more
so, and it takes much greater and more accurate domain models and architectural analysis to understand and
abstract all those business rules/processes/UI etc. capabilities for which configuration is needed into the cho-
sen configuration technology.
• Without full architectural multi-tenancy, no vendor of off-premise software can begin to cope with exten-
sively configured customer instances at a profit-making cost unless no otherwise-capable competitor has full
multi-tenancy.
• While it’s certainly possible to use single-tenant software as the platform for some flavor of on-demand, sub-
scribed software, and virtualization techniques can reduce the costs and risks of deploying this approach. How-
ever, full architectural multi-tenancy will always be less costly than single-tenancy when constructed correctly.
• When you add more architectural multi-tenancy capabilities needed for customer-satisfying on-demand soft-
ware, not only are the total costs of ownership reduced tremendously, but improvement in total costs of serv-
ice delivery are also substantial.

Table 1: Lessons From the Past


