August/September 1991 Volume VII Issue 4 A Publication of the Association of Human Resource Systems Professionals

Everything You
Wanted To Know, But ..

The fOIIOWing is excerpted from the that say: “We want an integrated system.” Integration is good. We

. 17’ . . don't know what it is, but we all want it.
sess'on O & A: Everyth!pg YOU Here's my proposed definition for what we mean by integra-
Wanted to Know, But. ..” led by tion. A system is not integrated unless it has the following three

Naomi L. Bloom on Tuesday A pn'l characteristics. First, an integrated system must have a common
. y . . .
user interface. What does that mean? It means every interaction
305 199 15 at the HR SP Ann ual Con - that the human being, whoever that person is, has with the
ference in Chicago_ system, has a common look and feel. If I learn the dialogue once,

it works every time. The same commands mean the same thing.
Everything works
exactly the same way.

loom, a well-known HRMS consultant and a frequent :
Furthermore, there is a :
B speaker before HR systems groups, responded to questions Every vendor gets

common point of entrv. e
: Y Zillions of RFI's, not to

The cosmic main menu.

[don't care if it's a GUI mention RFP's and
or command format, other questionnaires

there’s only one cosmic

Jrom the audience. The following three questions and answers are
illustrative of the lively discussion that took place. An audio tape of
the entire session is available.

B How will HR software vendors truly integrate ain menu. that say: "We want
the various application modules, e.g., payroll, HR, The second int ted t "
benefits, applicants, FLEX, etc., in a meaningful way? an integratea system.

aspect of integration is . .y -
First, what do we mean by integration? Every vendor gets a shared, non-redun- We don’t know what it IS,
zillions of RFT's, not to mention RFP’s and other questionnaires dant database. Shared but we all want it.

THE REVIEW AUGUST/SEPTEMBER 1991 | 1

means that all applications work off
exactly the same database. We don't have
separate files; we don’t extract for this or
that or the other thing. Non-redundant
comes about because you have built a
logical data model and - except for the
tuning required to achieve necessary
performance, i.e., the deliberate
denormalization to achieve performance -
there is no redundant data. None. And
there are fully normalized attributes if
you've really worked from a logical data
model — a bonus!

The third aspect of integration is the
most subtle point. It cannot be an
integrated system unless all components
are based on the same design principles.
We are sharing common modules. We
have standard coding procedures. To a
programmer, it looks the same.

Now, let me ask the $64,000
question. Does anybody know of an HRM
software package that meets these
criteria? None of them do? Why?
Because it's a goal. And [just made it up.
And the vendors haven't had time to catch
up. They're in this room, and they’re going
to write it down, then go off and make one.

If you say that you want an inte-
grated system, the vendors say they've got
one. If you don’'t know what you mean by
integration, then how can you hold them
accountable for reading your mind and
answering the question without knowing
what you're asking?

How will the vendors truly integrate,
given our definition of integration? It’s not
going to be easy. Some of the vendors will
have to start over from scratch. And some
of them are. Some of them have. Others

are going to take some aspect of their
system which they believe has the right
characteristics and redo the other parts to
conform. This does not come cheap. The
vendors will not do this unless there is a
market for it. If they think nobody knows
what integration means, they are not

going to spend this year and next year and

the following year’s profits achieving this.

BB When is it appropriate to
use a navigational database man-
age-ment system (DBMS)? And
when is it appropriate to use a

relational DBMS? And why do we
care? Or do we care? Can we use
our logical data model with either?

In the world of DBMS, there are only
two kinds - navigational and relational.
Navigational come in flavors like IMS,
which is hierarchical; IDMS (I believe) is
networked. In every navigational DBMS,
your path through the data must be
navigated via pointers that are predefined.
That means that you have to know

Maybe we should
spend twice as
much on
computers. They
are getting
cheaper. Are
people getting
cheaper?

upfront, as part of the design, the ex-
pected paths through the data.

Navigational databases are usually
the most efficient. All other things being
equal, such as hardware, etc., they are
the most efficient when you are proces-
sing along those predetermined paths.
They are absolutely a nightmare if you
leave the path.

In a relational DBMS, paths are
not predefined. The data carries with it
the ability to navigate. A relational DBMS
is absolutely the best thing going if you
often follow unpredicted paths through
the data.

Payroll is inherently navigational.
That's the way it is. That's the way it
works. There is no reason whatsoever,
if you're just doing a payroll system,
not to use one of those great navigational
databases.

But what about HRM? It’s inher-
ently relational. That is, the business is
inherently relational. Tell me all of the
employees who are likely to retire in the
next five years? Tell me all of the employ-
ees likely to retire in the next five years
that we would like to get rid of sooner
because they're deadwood? Those are the
kinds of questions we are dealing with in
HRM. You certainly can’t predict all of

THE REVIEW AUGUST/SEPTEMBER 1991

them today and build software around
these predictions that will stay stable for
more than three minutes.

It is my personal opinion that
you cannot have an effective human
resource management system (HRMS)
unless it is based on a relational DBMS.
Even though relational databases can be
very inefficient - especially for high volume
batch processing - their advantages far
outweigh this one disadvantage for most
HRM applications.

By the way, every one of the major,
non-relational DBMS products has worked
hard at overcoming this inherent diffi-
culty. They have good inquiry tools. They
have all kinds of techniques for making
HRM-type (often called browsing) inquiries
more efficient. Nonetheless, the mapping
from our business into a navigational
DBMS requires that we decide upfront the
most likely-to-be traversed path. And we
have to live with it.

When confronted with the DBMS
challenge, I say it should be relational.

It is going to cost more in computing
resources, but look at where we are
going to save. Maybe we should spend
twice as much on computers. They are
getting cheaper. Are people getting
cheaper? Has a computer ever filed a
sexual harassment suit?

If you have an application that is
inherently navigational, then use a
navigational DBMS. Good examples are
general ledger, inventory management,
and payroll. The HRM business is
inherently relational. When you look at the
data model of HRM and you look at the
many-to-many relationships that we have,
it is clear that only a relational DBMS can
really support HRM.

B How do you know when
your system has outlived its
usefulness? Once you make that
decision, do you kill it or do you
try to revitalize it?

There are some things that seem to
signal that it is time for the thing to die. I
will tell you my personal list. Kill it if it is
still using cards. (Don't laugh. You'd be

THE REVIEW AUGUST/SEPTEMBER 1991

The harder thing is
to recognize when
we have spent a
lot of money and
did not get the
value added to the
business that we
should have had.

amazed.) If it is still using tape master
files. If the thing was written in spaghetti
code twenty years ago and Betty, the
original programmer, is now 84 years
old. There are visible signals when it's
time for the thing to die. All the bright,
young people that we are recruiting into
our IS organizations look at it and say,
“I'm not touching that.” That's the easy
part. It's easy to recognize one that should
be killed off.

The harder thing is to recognize
when we have spent a lot of money and
did not get the value added to the busi-
ness that we should have had. We are not
sure whether we should Kill it off, start
over, or keep throwing money down the
rabbit hole.

Let me give you a classic example.
You did a user needs assessment by
interviewing at least 200 people, keeping
meticulous notes on every conversation.
Then you produced this giant volume that
eliminated duplicate points, but otherwise
was an unsynthesized jumble. The user
wish list.

Then you bound this and shipped it
to every software vendor on the planet,
most of whom were smart enough not to
respond. Some of them wrote back a three

page response, you know, with 400 pages
of marketing literature. And they said, “We
can do it all. We will meet your needs.”

Then we went out and did due
diligence. We took two people from the HR
department who were known to be
incompetent and therefore available for
our project. We took Betty, remember
Betty the payroll lady who's 84? We took
the most junior person from the IS
department, the most junior programmer/
analyst. He'd never even seen an HR
software package. Off they went.

They visited each vendor. They
listened to marketing presentations. They
checked references. They didn't know
what to ask, but they called everybody.
They made a recommendation. We bought
the software. Half a million dollars.

Now the software arrives, and the
vendor person shows up to install it. The
data center says, “It's CICS release what?”
So we have a little problem, but it will
pass because the vendor is going to
upgrade the software any minute.

Then the HR executive, who was
only vaguely aware of this project or
vaguely aware of anything, gets fired. We
have decided we are serious now about
Human Resources, and we bring in a
dynamo. She’s going to take the place
apart. No more wimpy HR executives here!
“And at my last company, we used the
XYZ package. What do you mean you
didn't buy that one?”

The bottom line is, we're holding a
leaking bag. Everybody agreed the old
system should be put out of its misery.
Right? No, nobody ever really agreed. The
payroll people love the old one. They have
this super zapper transaction so that,
when all else fails, they put it in and
just overlay the offending data. They're
happy as clams. They never wanted a
new system.

It all comes out now. The payroll
people never wanted the new system. The
compensation manager never understood
that the new system would mean we
would have edits on compensation. So
those special deals we have cooked-up
that nobody knows about are now going to
be in a database. When one thing goes
wrong, when son'iething changes the mix.

what looked like a done deal starts
unraveling.

At that point, what do you do? I
say, start over. Now, I don’'t mean you
throw out every piece of paper that has
ever been collected on the project and
forget everything you know. I say, you go
back to square one, lay out a responsible
approach to reaching a consensus and
making a decision. And then use every-
thing that's already been done to contrib-
ute to that.

Then you have the third case. We've
got a system. It may not be integrated, but
we've got a lot of stuff automated. We send
extracts to all the divisions and they've
built up subsystems. The core software,
whether we built it ourselves or we bought
it, has only been installed for eight or ten
years. Of course, it was designed ten years
before that, but we’ve only had it for eight
or ten years. It cost a lot of money to
implement and we've been building on it
for years. Then the new HRMS manager
says, ‘I know there’s a better way.”

But nobody wants to listen. Because
you're really okay, not great, but okay. We
don’t have an order entry system, and we
don't have a financial management
system, so there’s really bigger fish to fry.

That, to me, is the most challenging
situation. That calls for greater shrewd-
ness than either of the other two. Because
it calls for someone to really understand
the business. Not the basic stuff, like the
fact that we have to keep track of em-
ployee records and a little applicant

tracking, and a little 401K stuff. But the
serious stuff. Like why are employees
leaving us? And why are we constantly
hiring and laying off? Why don’t we have
a good fit between the people we have and
the work that is going to be done?

The real question becomes, “How
can [add value to the stuff I've already got
without spending tons of money?” Most

firms use a process called systems audit

ing to revitalize existing systems. We do
this in our personal lives. I mean, don’t we
periodically look in the mirror and say,
“My hair's turning gray. I don't think I can
cope with this. Maybe a little rinse would

do it.” I don’t chop off my head.

It's the same analytical process. It’s
a lot easier to start over and make a big
bang. It's a lot easier to yell, put the thing
out of its misery and make a big bang. It is
really quite difficult and takes a good bit of
sophistication to know the business you're
serving well enough to say, “for just a little
tweek, for just a small investment, for just
a Saturday of my time, I could really add
value.” If you do that for three or four
years, somebody’s going to notice. And
then when you announce that it is time for
replacement, you have a lot of credibility
with which to start over.

- ABOUT THE AUTHOR

Naomi Bloom has nearly 25 years
experience in strategic planning and
design, development, implementation,
audit, and support of financial, data
analysis, administrative and, especially,
human resource management systems.
Her experience includes resolving the
organizational, functional, technical,
and project management issues related
to these systems. She is also trained in
the use of state-of-the-art life cycle
productivity tools and techniques,
including CASE concepts and prin-
ciples. Using her formal systems
planning methodology, Bloom leads
corporate clients from strategic systems

planning for
HRM
through the
life cycles of
recom-
mended
projects.
Bloom, who
holds an
MBA in
finance and
accounting systems from Boston
University, can be seen nationally on
the PBS television course, “The New

Literacy: An Introduction to Comput-
ers.” M

THE REVIEW AUGUST/SEPTEMBER 1991

